

Potsdam Institute for Climate Impact Research

A global abundance of natural gas increases the difficulty to achieve the 2°C target

Jérôme Hilaire, Nico Bauer, Elmar Kriegler and Lavinia Baumstark

3rd June 2014 - IEW 2015, Abu Dhabi

Leibniz Association

Bundesministerium für Bildung und Forschung Source: MIT

Contents

- 1. Motivation
 - 1.1 Natural gas
 - 1.2 Climate policy
- 2. Methodology
- 3. Results
 - 3.1 GHG emissions
 - 3.2 Transformation of the energy system
 - 3.3 Macro-economic impacts

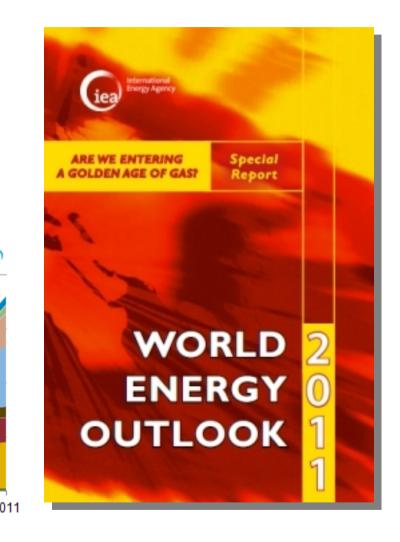
4. Conclusions

1. Motivation 2. Methodology

1.1 Natural gas 2.1 Scenario

1.2 Climate policy 2.2 REMIND

3. Results


3.1 GHG emissions

3.2 Energy system transformation

3.3 Macro-economic impacts

Shale gas boom

	ted anni cubic fee			le natur	ai gas j	producti	on, 2 00	0-2011		é	eia
0		Rest of	US								
		Bakken	(ND)								
6 —	■Eagle Ford (TX)										
0	Marcellus (PA and WV)										
		Haynes	ville (LA	and TX)							
4		Woodfo	ord (OK)								
-	Fayetteville (AR)										
	-	Barnett	(TX)								
2 —		Antrim (MI, IN, a	and OH)							
-											
							20000				
0 💻	_	_				1		1		1	
2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	20

1. Motivation	2. Methodology				
1.1 Natural gas	2.1 Scenario				
1.2 Climate policy	2.2 REMIND				

3. Results 3.1 GHG emissions

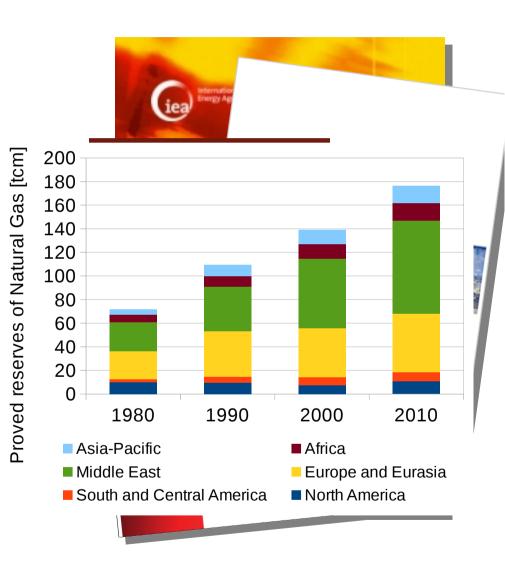
3.2 Energy system transformation

3.3 Macro-economic impacts

- Shale gas boom
- Conventional and unconventional gas
- Fossil fuel resource surveys
 - Rogner 1997
 - USGS 2000, 2012
 - BGR 2009, 2011, 2014
 - Rogner et al 2012

1. Motivation 2

ation 2. Methodology


1.1 Natural gas 2.1 Scenario

1.2 Climate policy 2.2 REMIND

- 3. Results
- 3.1 GHG emissions
- 3.2 Energy system transformation

3.3 Macro-economic impacts

- Shale gas boom
- Conventional and unconventional gas
- Fossil fuel resource surveys
 - Rogner 1997
 - USGS 2000, 2012
 - BGR 2009, 2011, 2014
 - Rogner et al 2012
 - BP statistics 1980-2010

1. Motivation2. Methodology

1.1 Natural gas 2.1 Scenario

1.2 Climate policy 2.2 REMIND

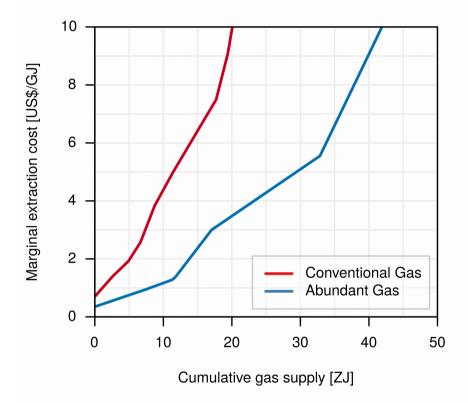
3. Results

3.1 GHG emissions

3.2 Energy system transformation

3.3 Macro-economic impacts

- Shale gas boom
- Conventional and unconventional gas
- Fossil fuel resource surveys
 - Rogner 1997
 - USGS 2000, 2012
 - BGR 2009, 2011, 2014
 - Rogner et al 2012
 - BP statistics 1980-2010
- Uncertainty
 - resource estimates
 - extraction costs
 - above ground factors

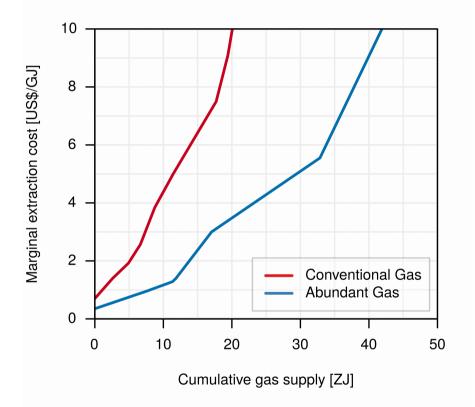


1. Motivation2. Methodology1.1 Natural gas2.1 Scenario1.2 Climate policy2.2 REMIND

- 3. Results
- 3.1 GHG emissions
- 3.2 Energy system transformation

- Shale gas boom
- Conventional and unconventional gas
- Fossil fuel resource surveys
 - Rogner 1997
 - USGS 2000, 2012
 - BGR 2009, 2011, 2014
 - Rogner et al 2012
 - BP statistics 1980-2010
- Uncertainty
 - resource estimates
 - extraction costs
 - above ground factors

1. Motivation2. Methodology1.1 Natural gas2.1 Scenario1.2 Climate policy2.2 REMIND


- 3. Results
- 3.1 GHG emissions

3.2 Energy system transformation

3.3 Macro-economic impacts

Natural gas: a bridge to a low-carbon future?

- LCAs show lower GHG emissions impact of gas compared to coal (Burnahm et al 2012, Heath et al 2014)
- Economic benefits (IEA 2011, 2012)
- Energy consumption increase and substitute low-carbon technologies (nuclear, renewables) (EMF 2013, Shearer et al 2014, McJeon et al 2014)
- No global study analysing effects of increasing gas supply while implementing climate policies

Long-term supply-cost curve

1. Motivation2. Methodology1.1 Natural gas2.1 Scenario1.2 Climate policy2.2 REMIND

- 3. Results
- 3.1 GHG emissions
- 3.2 Energy system transformation
- 3.3 Macro-economic impacts

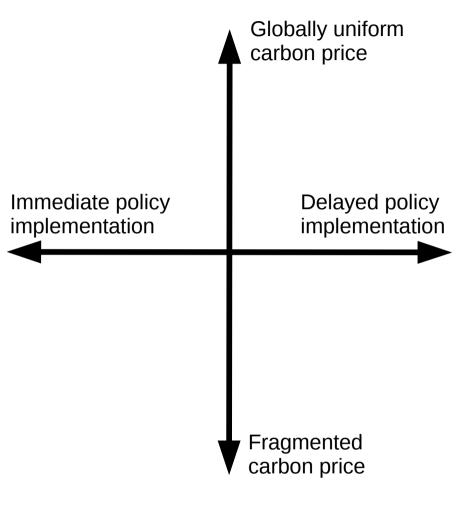
Climate policy: What is the current state of climate policies in the World?

- 2°C target to avoid dangerous climate change
- Carbon pricing
- Climate policy fragmentation and delay

1. Motivation

2. Methodology 1.1 Natural gas 2.1 Scenario

1.2 Climate policy 2.2 REMIND 3. Results


3.1 GHG emissions

3.2 Energy system transformation

3.3 Macro-economic impacts

Climate policy: What is the current state of climate policies in the World?

- 2°C target to avoid dangerous climate change
- Carbon pricing
- Climate policy fragmentation and delay

1. Motivation

1.1 Natural gas 2.1 Scenario

2. Methodology

1.2 Climate policy 2.2 REMIND

3. Results

3.1 GHG emissions

3.2 Energy system transformation

3.3 Macro-economic impacts

Climate policy: What is the current state of climate policies in the World?

Globally uniform carbon price 1 2°C target to avoid dangerous climate change Carbon pricing Immediate policy Delayed policy implementation implementation Climate policy fragmentation and delay Immediate implementation of global carbon price to 1 achieve the 2°C target 2 Delayed and fragmented implementation until 2030 2 Fragmented to achieve the 2°C target carbon price Delayed implementation until 2030 to achieve the 3 2°C target 1. Motivation 2. Methodology 3. Results 4. Conclusions 3.1 GHG emissions 1.1 Natural gas 2.1 Scenario 11 3.2 Energy system transformation 1.2 Climate policy 2.2 REMIND 3.3 Macro-economic impacts

Natural gas as a bridge to a low-carbon future?

• A scenario analysis

		A Natural gas supply>					
		Conventional gas (CG)	Abundant gas (AG)				
Â	Baseline	CG-base	AG-base	0			
← Climate policy —	Delayed climate policy until 2030 (shock)	CG-dCPk	AG-dCPk	3			
	Delayed climate policy until 2030 (smooth)	CG-dCPh	AG-dCPh	2			
	Immediate climate policy	CG-iCP	AG-iCP	1			

1. Motivation 2

2. Methodology

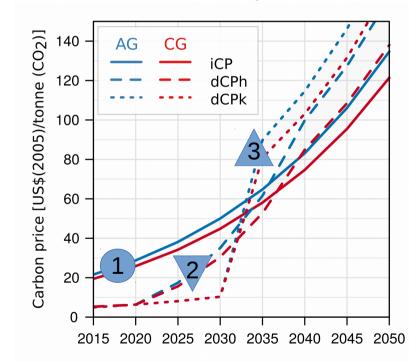
1.1 Natural gas 2.1 Scenario

1.2 Climate policy 2.2 REMIND

3. Results

3.1 GHG emissions

3.2 Energy system transformation


3.3 Macro-economic impacts

Natural gas as a bridge to a low-carbon future?

• A scenario analysis

		Natural g	Natural gas supply ————>					
		Conventional gas (CG)	Abundant gas (AG)					
Î	Baseline	CG-base	AG-base	0				
policy —	Delayed climate policy until 2030 (shock)	CG-dCPk	AG-dCPk					
Climate	Delayed climate policy until 2030 (smooth)	CG-dCPh	AG-dCPh					
¥	Immediate climate policy	CG-iCP	AG-iCP					

Carbon prices

4. Conclusions

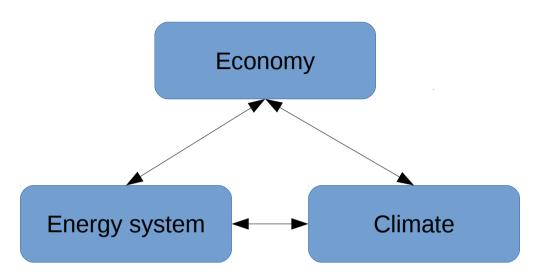
1. Motivation

2. Methodology

1.1 Natural gas 2.1 Scenario

1.2 Climate policy 2.2 REMIND

3. Results


3.1 GHG emissions

3.2 Energy system transformation

3.3 Macro-economic impacts

13

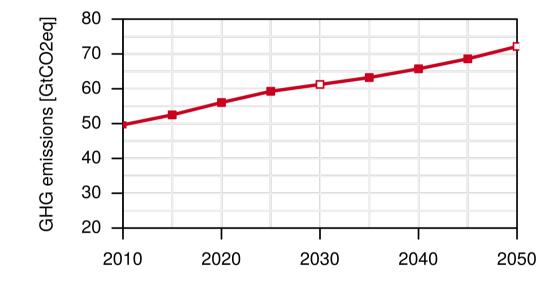
- Energy-economy-climate integrated model
- Welfare optimising
- Perfect foresight
- Bottom-up energy system
- Climate: MAGICC
- 11 regions
- Time frame: 2010-2100

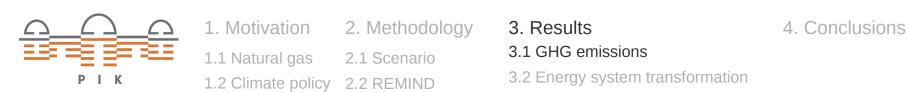
1. Motivation 2. Methodology

1.1 Natural gas 2.1 Scenario

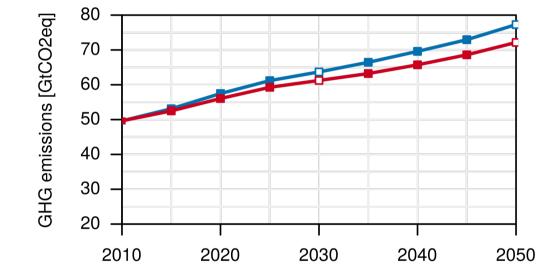
1.2 Climate policy 2.2 REMIND

- 3. Results
- 3.1 GHG emissions


3.2 Energy system transformation


3.3 Macro-economic impacts

Results

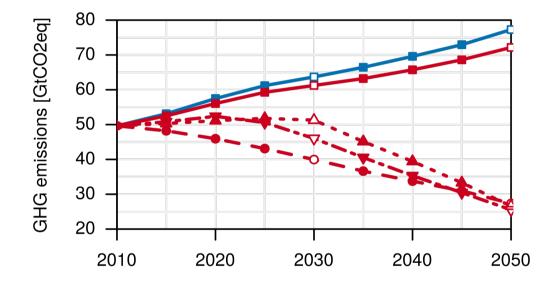


- Absence of climate policy
 - GHG emissions increase in CG world

- Absence of climate policy
 - GHG emissions increase in CG world
 - Even larger in AG world

Motivation2. MethodologyNatural gas2.1 ScenarioClimate policy2.2 REMIND

3. Results


3.1 GHG emissions

3.2 Energy system transformation

3.3 Macro-economic impacts

17

- Absence of climate policy
 - GHG emissions increase in CG world
 - Even larger in AG world
- Climate policies implemented
 - Significant GHG emissions reduction in CG ...

1. Motivation2. Methodology1.1 Natural gas2.1 Scenario

1.2 Climate policy 2.2 REMIND

Results

3.1 GHG emissions

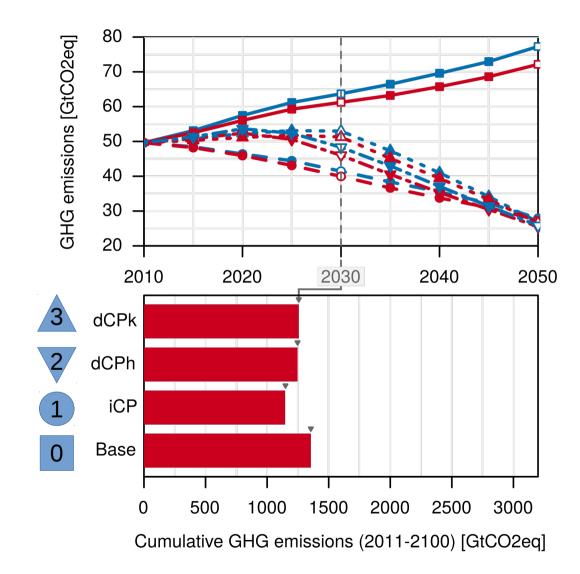
3.2 Energy system transformation

3.3 Macro-economic impacts

- Absence of climate policy
 - GHG emissions increase in CG world
 - Even larger in AG world
- Climate policies implemented
 - Significant GHG emissions reduction in CG and AG worlds
 - Though GHG emissions remain larger in AG world

Motivation
 Methodology
 Natural gas
 Scenario
 Climate policy
 REMIND

3. Results


3.1 GHG emissions

3.2 Energy system transformation

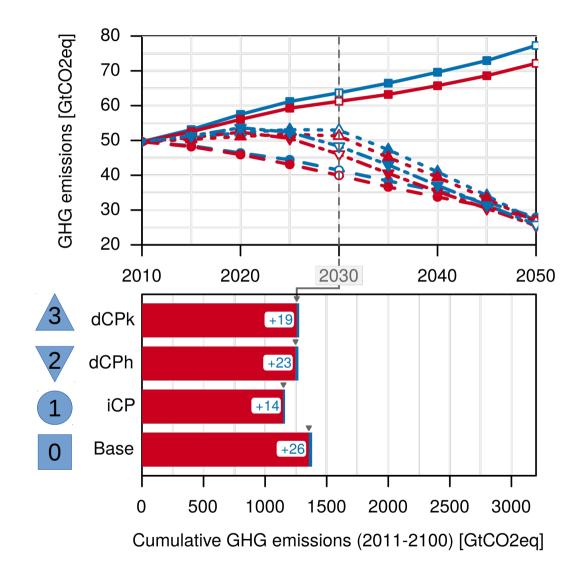
3.3 Macro-economic impacts

Global GHG emissions - cumulative

Immediate climate policy more effective

4. Conclusions

Motivation
 Methodology
 Natural gas
 Scenario
 Climate policy
 REMIND


3. Results

3.1 GHG emissions

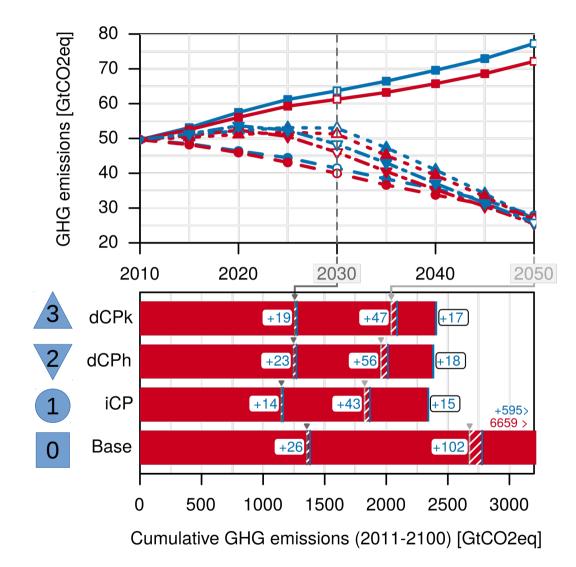
3.2 Energy system transformation

Global GHG emissions - cumulative

- Immediate climate policy more effective
- Also to reduce GHG emissions increase from AG

4. Conclusions

Motivation
 Methodology
 Natural gas
 Scenario
 Climate policy
 REMIND


3. Results

3.1 GHG emissions

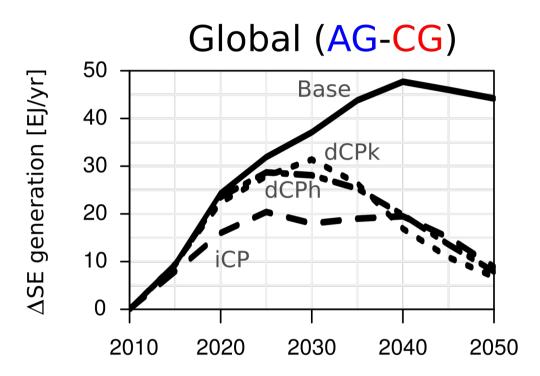
3.2 Energy system transformation

Global GHG emissions - cumulative

- Immediate climate policy more effective
- Also to reduce GHG emissions increase from AG
- Additional GHG emitted in delayed cases will have significant impact on the energy system

4. Conclusions

1. Motivation2. Methodology1.1 Natural gas2.1 Scenario


1.2 Climate policy 2.2 REMIND

3. Results

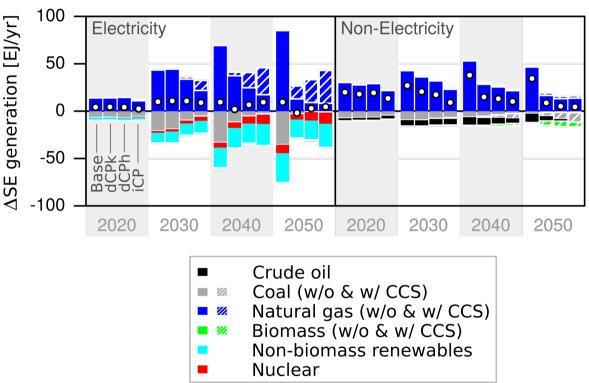
3.1 GHG emissions

3.2 Energy system transformation

- Increase in energy generation
- Partially explains increase in GHG emissions

4. Conclusions

3. Results


3.1 GHG emissions

3.2 Energy system transformation

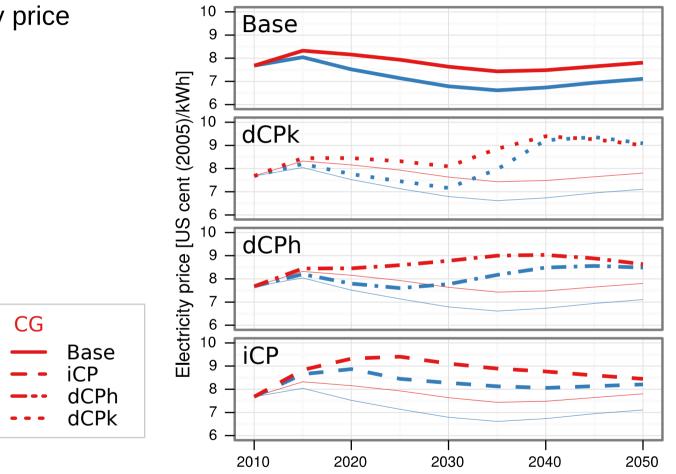
- Electric sector
 - Increase of gas+CCS
 - Decrease of coal, nuclear and renewables
- Non-electric sector
 - Increase of gas
 - Decrease of coal, oil and biomass

Sectoral (AG-CG)

4. Conclusions

1. Motivation 2. Methodology

1.1 Natural gas2.1 Scenario1.2 Climate policy2.2 REMIND


3. Results

3.1 GHG emissions

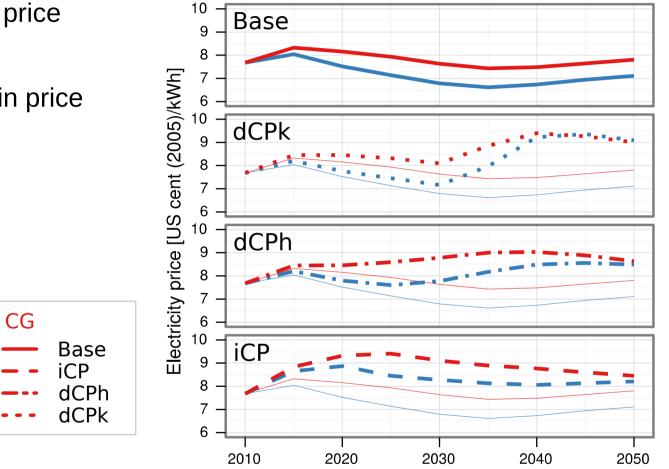
3.2 Energy system transformation

Macro-economic implications

• AG leads to electricity price decrease

1. Motivation2. Methodology1.1 Natural gas2.1 Scenario1.2 Climate policy2.2 REMIND

AG


- 3. Results
- 3.1 GHG emissions

3.2 Energy system transformation

3.3 Macro-economic impacts

Macro-economic implications

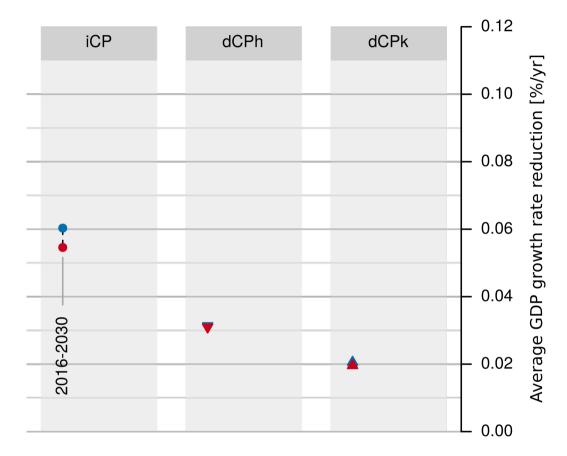
- AG leads to electricity price decrease
- Climate policy results in price increases

Motivation
 Methodology
 Natural gas
 Scenario
 Climate policy
 REMIND

AG

- 3. Results
- 3.1 GHG emissions

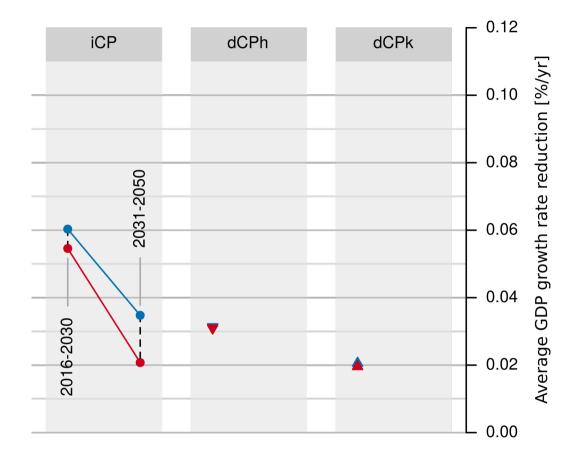
3.2 Energy system transformation


3.3 Macro-economic impacts

4. Conclusions

26

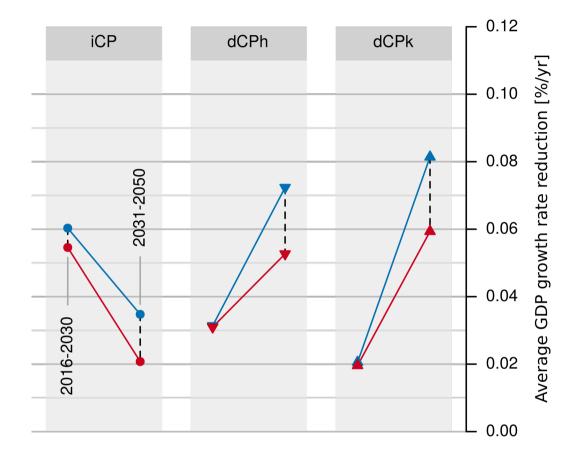
Macro-economic implications – near-term effects


• Trade-off: immediate VS. delayed climate policies

Macro-economic implications – near-term effects

- Trade-off: immediate VS. delayed climate policy
- Immediate CP have higher costs in the near-term (2016-2030) but lower ones afterwards

4. Conclusions



- 3. Results
- 3.1 GHG emissions

3.2 Energy system transformation

Macro-economic implications – near-term effects

- Trade-off: immediate VS. delayed climate policy
- Immediate CP have higher costs in the near-term (2016-2030) but lower ones afterwards
- Delayed CP have lower costs in the near-term but higher ones afterwards

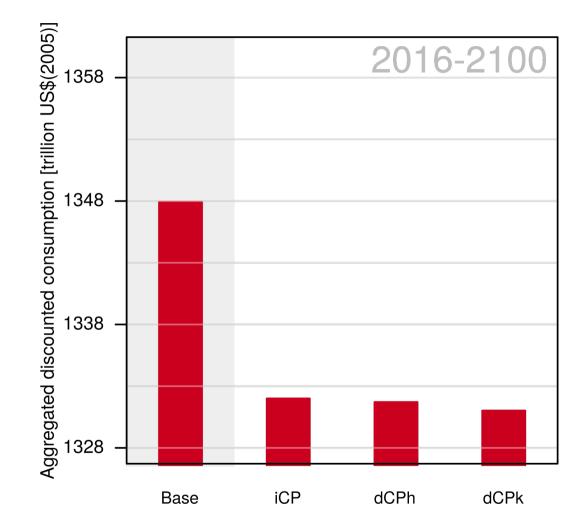
1. Motivation 2. Methodology

1.1 Natural gas 2.1 Scenario

1.2 Climate policy 2.2 REMIND

3. Results

3.1 GHG emissions

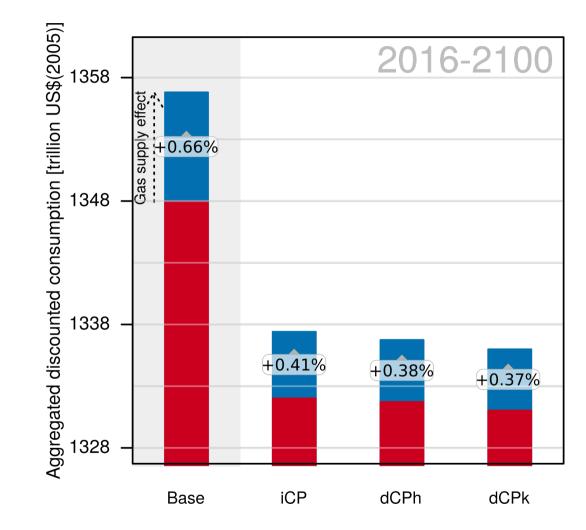

3.2 Energy system transformation

3.3 Macro-economic impacts

4. Conclusions

29

Macro-economic implications – long-term effects

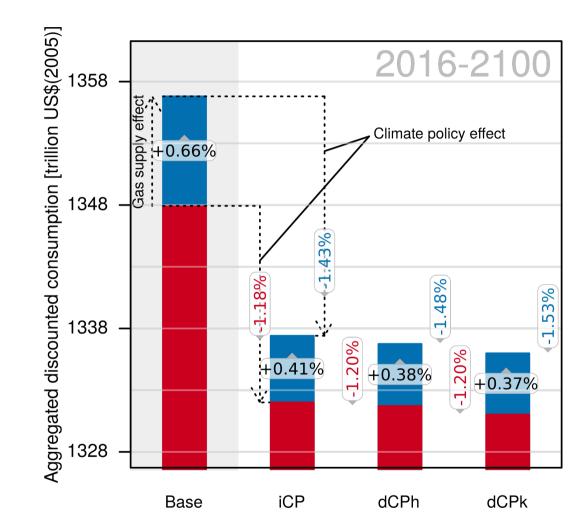


- 3. Results
- 3.1 GHG emissions
- 3.2 Energy system transformation

3.3 Macro-economic impacts

Macro-economic implications – long-term effects

• Gas supply effect increases consumption



- Motivation
 Methodology
 Natural gas
 Scenario
 Climate policy
 REMIND
- 3. Results
- 3.1 GHG emissions
- 3.2 Energy system transformation

3.3 Macro-economic impacts

Macro-economic implications – long-term effects

- Gas supply effect increases consumption
- Climate policy effect
 decreases consumption
- Largest effect for AG and delayed climate policy

- 1. Motivation2. Methodology1.1 Natural gas2.1 Scenario1.2 Climate policy2.2 REMIND
- 3. Results
- 3.1 GHG emissions
- 3.2 Energy system transformation

3.3 Macro-economic impacts

Conclusions

- Increasing natural gas supply would bring some benefits:
 - Higher GDP and consumption
 - Lower electricity prices

1. Motivation 2. Methodology

1.1 Natural gas 2.1 Scenario

1.2 Climate policy 2.2 REMIND

3. Results

3.1 GHG emissions

3.2 Energy system transformation

3.3 Macro-economic impacts

Conclusions

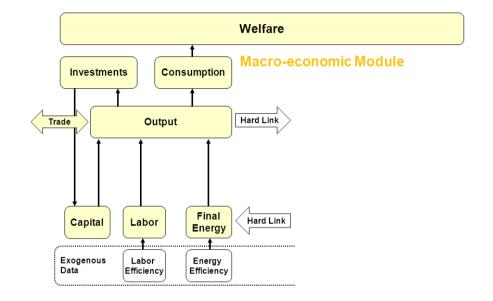
- Increasing natural gas supply would bring some benefits:
 - Higher GDP and consumption
 - Lower electricity prices
- But its role as a bridge to a low-carbon future is called into question because
 - Delaying climate policy lead to higher opportunity costs
 - It would be even more difficult if the target would be 1.5°C

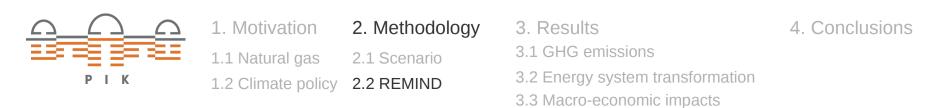
1. Motivation 2. Methodology

1.1 Natural gas2.1 Scenario1.2 Climate policy2.2 REMIND

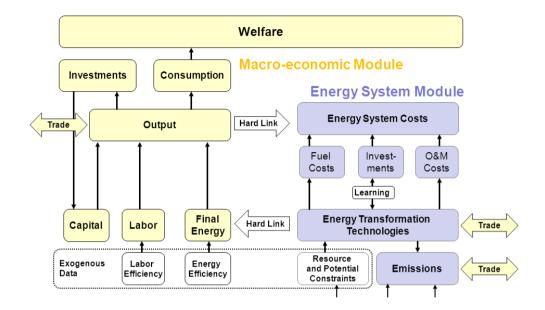
3. Results

3.1 GHG emissions


3.2 Energy system transformation


3.3 Macro-economic impacts

Thank you for your attention!



- Hybrid model
- Intertemporal optimisation

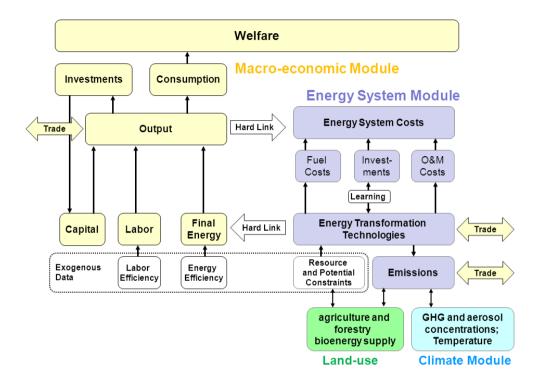
- Hybrid model
- Intertemporal optimisation
- Bottom-up representation of energy system: fossil fuel supply (incl. Trade), renewable energy potentials and various energy technologies

1. Motivation

n 2. Methodology

1.1 Natural gas 2.1 Scenario

1.2 Climate policy 2.2 REMIND


3. Results

3.1 GHG emissions

3.2 Energy system transformation

3.3 Macro-economic impacts

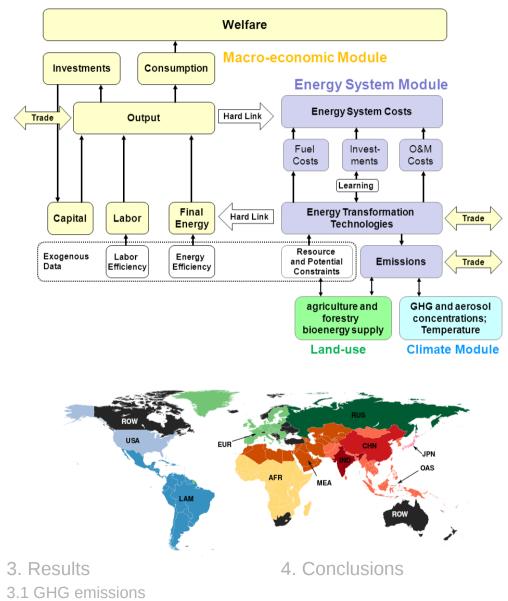
- Hybrid model
- Intertemporal optimisation
- Bottom-up representation of energy system: fossil fuel supply (incl. Trade), renewable energy potentials and various energy technologies

1. Motivation

2. Methodology

1.1 Natural gas 2.1 Scenario

1.2 Climate policy 2.2 REMIND


3. Results

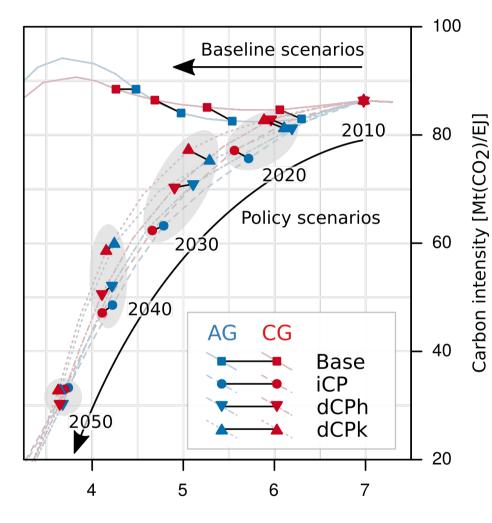
3.1 GHG emissions

3.2 Energy system transformation

3.3 Macro-economic impacts

- Hybrid model
- Intertemporal optimisation
- Bottom-up representation of energy system: fossil fuel supply (incl. Trade), renewable energy potentials and various energy technologies
- 11 world regions
- Time frame: 2010 2100

1. Motivation 2. Methodology 1.1 Natural gas


2.1 Scenario

1.2 Climate policy 2.2 REMIND

3.2 Energy system transformation

Global GHG emissions - energy transition

• Transitions between the immediate and delayed climate policy cases are different

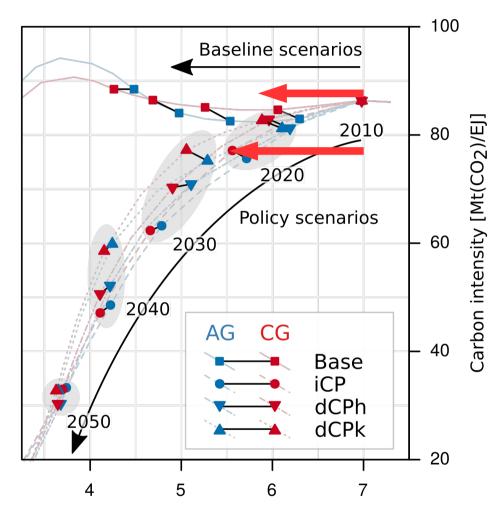
Energy intensity [MJ/US\$(2005)]

4. Conclusions

Motivation
 Methodology
 Natural gas
 Scenario
 Climate policy
 REMIND

3. Results

3.1 GHG emissions


3.2 Energy system transformation

3.3 Macro-economic impacts

40

Global GHG emissions - energy transition

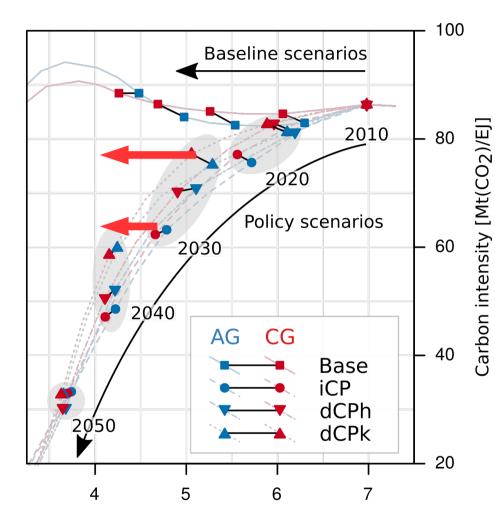
- Transitions between the immediate and delayed climate policy cases are different
- Delaying CP requires less changes initially

Energy intensity [MJ/US\$(2005)]

4. Conclusions

1. Motivation2. Methodology1.1 Natural gas2.1 Scenario

1.2 Climate policy 2.2 REMIND


3. Results

3.1 GHG emissions

3.2 Energy system transformation

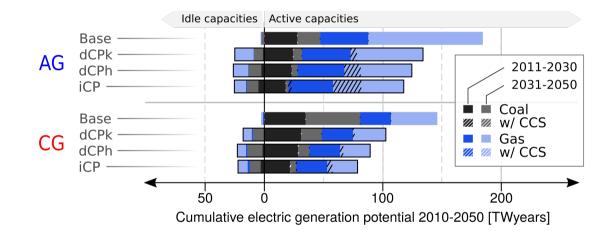
Global GHG emissions - energy transition

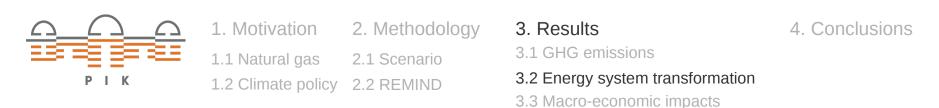
- Transitions between the immediate and delayed climate policy cases are different
- Delaying CP requires less changes initially
- But much more after 2030 (accelerated transition)

Energy intensity [MJ/US\$(2005)]

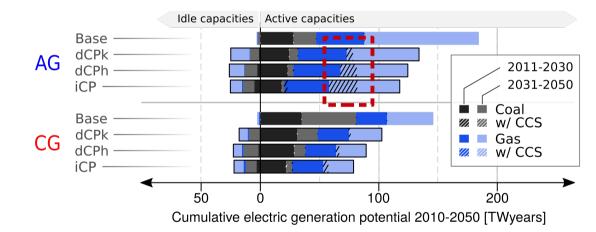
4. Conclusions

Motivation
 Methodology
 1.1 Natural gas
 Scenario


1.1 Natural gas2.1 Scenario1.2 Climate policy2.2 REMIND

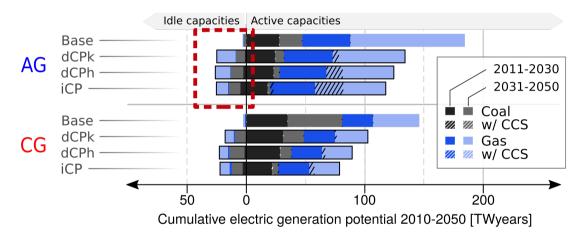

3. Results

3.1 GHG emissions


3.2 Energy system transformation

 More active gas capcities in AG than in CG (→ less coal capacities)

- More active gas capcities in AG than in CG (→ less coal capacities)
- More CCS in immediate than in delayed CP cases


3. Results

3.1 GHG emissions

3.2 Energy system transformation

3.3 Macro-economic impacts

- More active gas capcities in AG than in CG (→ less coal capacities)
- More CCS in immediate than in delayed CP cases
- More idle capacities in AG
- In particular idle gas capacities

1. Motivation 2. Methodology

1.1 Natural gas 2.1 Scenario

1.2 Climate policy 2.2 REMIND

3. Results

3.1 GHG emissions

3.2 Energy system transformation

3.3 Macro-economic impacts

REMIND: Techno-economic assumptions

		Life- time	Overnight i cos		O&M	costs	Conversio	n efficiency	Capture Rate
		Years	\$US/	′kW	\$US	5/GJ		%	%
			No CCS	With CCS	No CCS	With CCS	No CCS	With CCS	With CCS
		_							
Coal F	PC .	40	1400	2400	2.8	5.1	45-51#	36	90
0	Oxyfuel	40		2150		4.7		37	99
1	GCC	40	1650	2050	3.4	4.6	43-52#	38-48#	90
	C2H2*	35	1260	1430	1.9	2.1	59	57	90
0	C2L*	35	1450	1520	4.2	5.0	40	40	70
0	C2G	35	1200		1.4		60		
Gas N	NGT	30	350		1.5		38-43#		
1	NGCC	35	650	1100	1.0	1.7	56-64#	48/59	90
5	SMR	35	500	550	0.6	0.7	73	70	90
Biomass B	BIGCC*	40	1860	2560	4.2	6.0	42	31	90
E	BioCHP	40	1375		5.0		43		
B	32H2*	35	1400	1700	5.7	6.8	61	55	90
B	32L*	35	2500	3000	3.8	4.9	40	41	50
E	32G	40	1000		1.9		55		
Nuclear	INR	40	3000		5.2		33 ⁵		
	<u> </u>								

REMIND: Production function

Abbr.: Heat - District heat & heat pumps, LDV - Light Duty Vehicle, ICE - Internal Combustion Engine, BEV - Battery Electric Vehicle, H2 FCV - Hydrogen Fuel Cell Vehicle, Av.& Bus - Aggregate of Aviation and Bus, El. Trains – Electric Tr.

